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Planetary Image Registration

• Process of aligning two or more planetary images, or one or more
images wrt another data source

• Fundamental task for using multiple images (often coming from
diverse missions) for planetary science applications

• Challenging task because of possibly large differences between
the acquired images, of their possibly heterogeneous nature (e.g.,
multisensor), and of their size

Before registration After registration



5

Overview

Objectives

• Proposing a new approach for planetary image registration

• Extracting craters (especially large ones) to be used for registration

• Validating the approach with real planetary/lunar data

Key Ideas

• Using a marked point process model coupled with a multiple birth
and cut algorithm for crater extraction

• Using the extracted craters to obtain a preliminary registration
• Maximizing mutual information within the image pair in a

neighborhood of the preliminary transformation to minimize error
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MPP for craters: ellipse with low eccentricity
• Orientation angle 𝜗𝜗
• Center coordinates 𝑥𝑥0,𝑦𝑦0
• Major axis 𝑎𝑎
• Eccentricity 𝑒𝑒

Crater Extraction – MPP

Marked point processes
• A point process is a stochastic process whose realizations

are sets of points in the image plane (e.g. Poisson points).
• In an MPP, each point is enriched with additional variables

(marks) that parameterize an object attached to the point.
• Flexible and powerful models for simultaneous detection of

an unknown number of parameterized objects
• Markov properties allows modeling local interactions and

defining a prior on the object distribution in the scene

𝜗𝜗𝑎𝑎

(𝑥𝑥0,𝑦𝑦0)
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Crater Extraction – Energy Function

• Bayesian estimation of the configuration 𝑋𝑋 = {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑛𝑛 of ellipses
given image data (Canny contour map 𝐶𝐶): energy minimization

• Prior penalizes overlapping ellipses in the scene

𝑥𝑥𝑖𝑖 ∨ 𝑥𝑥𝑗𝑗= area of union of ellipses 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗
𝑥𝑥𝑖𝑖 ∧ 𝑥𝑥𝑗𝑗= area of intersection of 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗

𝑈𝑈 𝑋𝑋|𝐶𝐶 = 𝑈𝑈𝑃𝑃(𝑋𝑋) + 𝑈𝑈𝐿𝐿(𝐶𝐶|𝑋𝑋)

𝑈𝑈𝑃𝑃 𝑋𝑋 =
1
𝑛𝑛

�
𝑥𝑥𝑖𝑖∧𝑥𝑥𝑗𝑗>0

𝑅𝑅𝑖𝑖𝑗𝑗 where 𝑅𝑅𝑖𝑖𝑗𝑗 = �
𝑥𝑥𝑖𝑖 ∧ 𝑥𝑥𝑗𝑗
𝑥𝑥𝑖𝑖 ∨ 𝑥𝑥𝑗𝑗

for
𝑥𝑥𝑖𝑖 ∧ 𝑥𝑥𝑗𝑗
𝑥𝑥𝑖𝑖 ∨ 𝑥𝑥𝑗𝑗

≤ 0.1

1 otherwise

𝑝𝑝 𝑋𝑋|𝐶𝐶 ∝ 𝑒𝑒−𝑈𝑈(𝑋𝑋|𝐶𝐶)
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Crater Extraction – Energy Function

• Likelihood favors the fit between contours and ellipses through
a correlation measure and a Hausdorff distance measure:

𝑥𝑥𝑖𝑖0 = set of pixels associated with ellipse 𝑥𝑥𝑖𝑖 in the image
𝑥𝑥𝑖𝑖𝑟𝑟 = set of pixels inside an annulus of radius 𝑟𝑟 around ellipse 𝑥𝑥𝑖𝑖
𝑑𝑑ℋ 𝑥𝑥𝑖𝑖0,𝐶𝐶 = Hausdorff distance between 𝑥𝑥𝑖𝑖 and contours

𝑈𝑈 𝑋𝑋|𝐶𝐶 = 𝑈𝑈𝑃𝑃(𝑋𝑋) + 𝑈𝑈𝐿𝐿(𝐶𝐶|𝑋𝑋) 𝑈𝑈𝐿𝐿 𝐶𝐶 𝑋𝑋 = �
𝑖𝑖=1

𝑛𝑛
𝑑𝑑ℋ(𝑥𝑥𝑖𝑖0,𝐶𝐶)

𝑛𝑛𝑎𝑎𝑖𝑖
−

𝑥𝑥𝑖𝑖0 ∩ 𝐶𝐶
𝑥𝑥𝑖𝑖𝑟𝑟 ∩ 𝐶𝐶

𝑑𝑑ℋ 𝐴𝐴,𝐵𝐵 = max sup inf
𝛼𝛼∈𝐴𝐴 𝛽𝛽∈𝐵𝐵

𝑑𝑑(𝛼𝛼,𝛽𝛽) ; sup inf
𝛽𝛽∈𝐵𝐵 𝛼𝛼∈𝐴𝐴

𝑑𝑑(𝛼𝛼,𝛽𝛽)
𝑑𝑑ℋ

Classical distance
between sets 
𝑑𝑑 𝑥𝑥𝑖𝑖0,𝐶𝐶 = 0 ─ Ellipse

─ Contours
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Crater Extraction – MBC

Multiple Birth and Cut (MBC): algorithm for MPP energy minimization proposed 
within Earth observation applications

1. Initialization: 𝑛𝑛 ← 0, 𝑅𝑅 ← constant

2. Generate a new configuration 𝑋𝑋(0)

3. Repeat:

4. Birth: generate 𝑋𝑋′ composed of 𝑅𝑅 new non-overlapping ellipses

5. 𝑋𝑋′′ ← 𝑋𝑋 𝑛𝑛 ∪ 𝑋𝑋′: all candidate ellipses

6. Cut: classify 𝑋𝑋′′ between craters to be kept and those to be discarded using graph
cuts on a case-specific graph associated with the energy contributions
⟹ 𝑋𝑋 𝑛𝑛+1 is obtained

7. Until convergence is reached
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Image Registration – First Step

• Rotation Scale and Translation (RST) transform 𝑇𝑇𝑝𝑝 ,
parameterized by 𝑝𝑝 = (𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦 ,𝜗𝜗,𝑘𝑘)

• First registration step
– Craters 𝑥𝑥𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟 (𝑖𝑖 = 1,2, … ,𝑛𝑛) are extracted from reference image.
– Transformation 𝑇𝑇𝑝𝑝 is applied to contours 𝐶𝐶𝑖𝑖𝑛𝑛 of input image.
– Fit between transformed contours 𝑇𝑇𝑝𝑝(𝐶𝐶𝑖𝑖𝑛𝑛) and craters is evaluated:

– 𝒥𝒥(𝑝𝑝) is minimized through generalized pattern search (with search
phase based on a genetic algorithm)

𝒥𝒥(𝑝𝑝) = �
𝑖𝑖=1

𝑛𝑛
𝑑𝑑ℋ(𝑥𝑥𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟,𝑇𝑇𝑝𝑝(𝐶𝐶𝑖𝑖𝑛𝑛))

𝑛𝑛𝑎𝑎𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 −

𝑥𝑥𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 ∩ 𝑇𝑇𝑝𝑝(𝐶𝐶𝑖𝑖𝑛𝑛)
𝑇𝑇𝑝𝑝(𝐶𝐶𝑖𝑖𝑛𝑛)
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Image Registration – Second Step

• Second registration step
– Max mutual information in a neighborhood of the transformation

resulting from the first step (to obtain higher accuracy)
– Mutual information between two discrete variables 𝑌𝑌 and 𝑍𝑍:

𝐼𝐼 𝑌𝑌,𝑍𝑍 = �
𝑦𝑦

�
𝑧𝑧

𝑃𝑃 𝑦𝑦, 𝑧𝑧 log
𝑃𝑃 𝑦𝑦, 𝑧𝑧
𝑃𝑃 𝑦𝑦 𝑃𝑃 𝑧𝑧

– Mutual information 𝐼𝐼(𝑝𝑝) between input image transformed by 1st

step and reference image is evaluated as a function of a further
transformation 𝑝𝑝, estimating probabilities through histograms.

– 𝐼𝐼(𝑝𝑝) is maximized using simulated annealing.



13

Wavelet-based Formulation

Crater detection is generally time-consuming: wavelets to speed up
the process and incorporate multiscale information.
• Decimated wavelets are applied to reference and input images keeping

only the LL components.
• Hierarchical crater detection and registration from coarsest to finest scale
• From each scale to the next, transformation is adapted and refined in a

neighborhood, and regions where craters are detected are removed to
minimize computational burden.

L

L

L

H

H

L

H

H
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Data Sets for Experiments

To validate crater detection results
• 6 THEMIS (Thermal Emission Imaging System)

images, TIR, 100m resolution, Mars Odissey mission
• 7 HRSC (High Resolution Stereo Color) images,

VIS, ~20m resolution, Mars Express mission
• Image sizes from 1581×1827 to 2950×5742 pixels

To validate registration results
• Semi-simulated image pairs: 20 pairs composed of

one real THEMIS or HRSC image and of an image
obtained by applying a synthetic transform and
AWGN quantitative validation wrt true transform

• Real multitemporal pair of LROC (Lunar
Reconnaissance Orbiter Camera) images, 100m
resolution qualitative visual analysis
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Experimental Results for Crater Detection

• Visually precise detection
• Focus on large craters: missed alarms

correspond to small craters, which
are much less relevant than large
craters for registration.

• No false alarms in any of the
considered images

• Detection percentage 𝐷𝐷:
• Average on THEMIS: 0.82
• Average on HRSC: 0.74
• Average on all images: 0.78

𝐷𝐷 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
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Registration Results on Semi-Synthetic Data

Visually accurate registration

Subpixel RMS registration error:
• Avg on 10 THEMIS pairs: 0.54 pixel
• Avg on 10 HRSC pairs: 0.59 pixel
• Avg on all 20 pairs: 0.57 pixel

Before registration After registration

RGB composites of reference and input images
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Registration Results on Real Data

Two crops of the original images and their checkerboard representation are
reported before and after registration: visually accurate registration.
Ground truth is not available for quantitative assessment so this
representation is used as a simple way to qualitatively evaluate the results.

Before registration Before registrationAfter registration After registration
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Conclusions and Future Development

Conclusion

• The proposed MPP-MBC approach proved effective for crater
extraction from planetary/lunar images.

• The developed 2-step registration approach was effective and rather
fast (max a few tens of minutes for max ~3000 × 6000 pixels).

• Visually accurate registration results from real multitemporal
images with rather large differences in illumination.

Future Developments
• Extension to multisensor and multiresolution images
• Parallelized more efficient implementations.
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RST Transformation

• Transformation with four parameters, i.e. two of translation, one
of scaling, and one of rotation

• Can be defined through a matrix 𝑇𝑇 that maps the image
coordinates to new ones according to the four parameters:

𝑇𝑇: 𝑥𝑥,𝑦𝑦, 1 ↦ 𝑥𝑥′,𝑦𝑦′

with:

𝑇𝑇 =
𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐 𝜗𝜗 𝑘𝑘 𝑐𝑐𝑖𝑖𝑛𝑛 𝜗𝜗 𝑡𝑡𝑥𝑥
−𝑘𝑘 𝑐𝑐𝑖𝑖𝑛𝑛 𝜗𝜗 𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐 𝜗𝜗 𝑡𝑡𝑦𝑦

0 0 1

• 𝑝𝑝 = 𝑡𝑡𝑥𝑥 𝑡𝑡𝑦𝑦 𝑘𝑘 𝜗𝜗 is the transformation vector that defines
the translation, the scaling factor, and the rotation.
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GPS Algorithm

• Flexible class of derivative-free unconstrained optimization algorithms
• Nicely fit the computation of 𝑝𝑝 because 𝒥𝒥(𝑝𝑝) is generally non-differentiable.

• Initialization 

Let 𝑥𝑥0 ∈ Γ be such that 𝑓𝑓 (𝑥𝑥0) is finite, and let 𝑀𝑀0 be a mesh on ℜ𝑛𝑛  

• Search and Poll Steps 

Perform the search and the poll steps until a trial point 𝑥𝑥𝑘𝑘+1 with a 

lower objective function value is found, or when it is shown that no 

such trial point exists 

Search Step: Evaluate the objective function on a finite subset 

of feasible trial points on the mesh 𝑀𝑀𝑘𝑘  

Poll step: Evaluate the objective function on the poll set around 

𝑥𝑥𝑘𝑘  

• Parameter Update 

If the search or the poll step produced a feasible iterate 𝑥𝑥𝑘𝑘+1 ∈ 𝑀𝑀𝑘𝑘 ∩

Γ for which 𝑓𝑓 (𝑥𝑥𝑘𝑘+1)  <  𝑓𝑓 (𝑥𝑥𝑘𝑘), then declare the iteration successful 

and increase the mesh size. Otherwise, decrease the mesh size if the 

iteration was unsuccessful. 

 

• Mesh Creation with the GPS
Positive Basis 2N method

• Combination of these vectors with
the mesh size and the current point
gives the new points to be tested.

• Search phase: a genetic algorithm
searches in the mesh for a point
with a lower value of 𝒥𝒥than the
current point.

• Poll phase: before declaring an
iteration unsuccessful, the
neighboring mesh points are polled
for points with a lower value of 𝒥𝒥.
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Image Registration – RMS

• When an accurate ground truth is available, the RMS registration error can be
computed analytically.

• Error transf. 𝑝𝑝𝜖𝜖 = 𝑡𝑡𝑥𝑥𝜖𝜖 , 𝑡𝑡𝑦𝑦𝜖𝜖 ,𝜗𝜗𝜖𝜖 , 𝑘𝑘𝜖𝜖
• GT transf. 𝑝𝑝𝐺𝐺𝐺𝐺 = 𝑡𝑡𝑥𝑥1 , 𝑡𝑡𝑦𝑦1 ,𝜗𝜗1, 𝑘𝑘1
• Computed transf. 𝑝𝑝 = 𝑡𝑡𝑥𝑥2 , 𝑡𝑡𝑦𝑦2 ,𝜗𝜗2,𝑘𝑘2
• 𝑄𝑄𝑝𝑝𝜖𝜖 = 𝑄𝑄𝑝𝑝𝑄𝑄𝑝𝑝𝐺𝐺𝐺𝐺

−1

• 𝑘𝑘𝜖𝜖 = 𝑘𝑘2
𝑘𝑘1

, 𝜗𝜗𝜖𝜖 = 𝜗𝜗2 − 𝜗𝜗1
• 𝑡𝑡𝑥𝑥𝜖𝜖 = 𝑡𝑡𝑥𝑥2 − 𝑘𝑘𝜖𝜖 𝑡𝑡𝑥𝑥1 cos𝜗𝜗𝜖𝜖 + 𝑡𝑡𝑦𝑦1 sin𝜗𝜗𝜖𝜖
• 𝑡𝑡𝑦𝑦𝜖𝜖 = 𝑡𝑡𝑦𝑦2 − 𝑘𝑘𝜖𝜖 𝑡𝑡𝑦𝑦1 cos𝜗𝜗𝜖𝜖 − 𝑡𝑡𝑥𝑥1 sin𝜗𝜗𝜖𝜖

• 𝑥𝑥′
𝑦𝑦′ = 𝑘𝑘𝜖𝜖

cos𝜗𝜗𝜖𝜖 sin𝜗𝜗𝜖𝜖
−sin𝜗𝜗𝜖𝜖 cos𝜗𝜗𝜖𝜖

𝑥𝑥
𝑦𝑦 +

𝑡𝑡𝑥𝑥𝜖𝜖
𝑡𝑡𝑦𝑦𝜖𝜖

𝐸𝐸 𝑝𝑝𝜖𝜖 =
1
𝐴𝐴𝐵𝐵�0

𝐴𝐴
�
0

𝐵𝐵
𝑥𝑥′ − 𝑥𝑥 2 + 𝑦𝑦′ − 𝑦𝑦 2𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦

𝐸𝐸2 𝑝𝑝𝜖𝜖 =
𝛼𝛼
3 𝑘𝑘𝜖𝜖2 − 2𝑘𝑘𝜖𝜖 𝑐𝑐𝑐𝑐𝑐𝑐 𝜗𝜗𝜖𝜖 + 1 + 𝑡𝑡𝑥𝑥𝜖𝜖

2 + 𝑡𝑡𝑦𝑦𝜖𝜖
2

− 𝐴𝐴𝑡𝑡𝑥𝑥𝜖𝜖 + 𝐵𝐵𝑡𝑡𝑦𝑦𝜖𝜖 1 − 𝑘𝑘𝜖𝜖 𝑐𝑐𝑐𝑐𝑐𝑐 𝜗𝜗𝜖𝜖 − 𝑘𝑘𝜖𝜖 𝐴𝐴𝑡𝑡𝑦𝑦𝜖𝜖 − 𝐵𝐵𝑡𝑡𝑥𝑥𝜖𝜖 𝑐𝑐𝑖𝑖𝑛𝑛 𝜗𝜗𝜖𝜖



26

Crater Extraction (4) - MBC

Multiple Birth and Cut: algorithm for MPP 
energy minimization proposed within Earth 

observation applications

1. Initialization: n ← 0, R ← constant

2. Generate a new configuration 𝜔𝜔′,𝜔𝜔(0) ← 𝜔𝜔′

3. Repeat:

4. Birth: generate 𝜔𝜔′′

5. 𝜔𝜔(𝑛𝑛+1) ← 𝜔𝜔(𝑛𝑛) ∪ 𝜔𝜔′′→ Graph Construction

6. Cut: optimize with graph cuts

7. Until convergence is reached

Convergence:
Here the convergence is
considered to be reached when
the cut returns the same
configuration of objects for
many consecutive iterations.
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Crater Extraction (4) - MBC

Multiple Birth and Cut: algorithm for MPP 
energy minimization proposed within Earth 

observation applications

1. Initialization: n ← 0, R ← constant

2. Generate a new configuration 𝜔𝜔′,𝜔𝜔(0) ← 𝜔𝜔′

3. Repeat:

4. Birth: generate 𝜔𝜔′′

5. 𝜔𝜔(𝑛𝑛+1) ← 𝜔𝜔(𝑛𝑛) ∪ 𝜔𝜔′′→ Graph Construction

6. Cut: optimize with graph cuts

7. Until convergence is reached

Example (𝑹𝑹 = 𝟏𝟏):
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